首页> 外文OA文献 >Probabilistic Multigraph Modeling for Improving the Quality of Crowdsourced Affective Data
【2h】

Probabilistic Multigraph Modeling for Improving the Quality of Crowdsourced Affective Data

机译:提高质量的概率多图建模   众包情感数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We proposed a probabilistic approach to joint modeling of participants'reliability and humans' regularity in crowdsourced affective studies.Reliability measures how likely a subject will respond to a question seriously;and regularity measures how often a human will agree with otherseriously-entered responses coming from a targeted population.Crowdsourcing-based studies or experiments, which rely on human self-reportedaffect, pose additional challenges as compared with typical crowdsourcingstudies that attempt to acquire concrete non-affective labels of objects. Thereliability of participants has been massively pursued for typicalnon-affective crowdsourcing studies, whereas the regularity of humans in anaffective experiment in its own right has not been thoroughly considered. Ithas been often observed that different individuals exhibit different feelingson the same test question, which does not have a sole correct response in thefirst place. High reliability of responses from one individual thus cannotconclusively result in high consensus across individuals. Instead, globallytesting consensus of a population is of interest to investigators. Built uponthe agreement multigraph among tasks and workers, our probabilistic modeldifferentiates subject regularity from population reliability. We demonstratethe method's effectiveness for in-depth robust analysis of large-scalecrowdsourced affective data, including emotion and aesthetic assessmentscollected by presenting visual stimuli to human subjects.
机译:我们提出了一种概率模型,用于在众包情感研究中对参与者的可靠性和人类规律性进行联合建模。与试图获取具体的非情感对象标签的典型众包研究相比,依赖于人类自我报告的影响的基于众包的研究或实验提出了更多挑战。对于典型的非情感性众包研究,参与者的可承受性已经得到了广泛的追求,而人类在情感性实验中的规律性还没有得到充分考虑。经常观察到,在同一测试题中,不同的个体表现出不同的感受,这首先并没有唯一的正确答案。因此,来自一个人的响应的高度可靠性不能最终导致各个人之间的高度共识。取而代之的是,调查人员会感兴趣的是在全球范围内测试人群的共识。基于任务和工人之间的协议多重图,我们的概率模型将主题规律性与总体可靠性区分开来。我们证明了该方法对大规模众包情感数据进行深入鲁棒分析的有效性,包括通过向人类受试者提供视觉刺激而收集的情感和审美评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号